Biofilm bioreactors for biofuel productions

Ali Demirci

Department of Agricultural and Biological Engineering
The Huck Institutes of the Life Sciences
The Pennsylvania State University

METHODS TO INCREASE BIOMASS IN REACTOR

BIOFILM FORMATION

BIOFILM

- Disadvantages:
 - Infections: dental, implant
 - Fouling: pipe, pump, heat exchanger
- Advantages:
 - Value-added products: organic acid, ethanol
 - Waste water treatment
 - Bioremediation: metal recovery, bioconversion

ADVANTAGES OF BIOFILM REACTOR

- Higher biomass density in reactor
- Increasing production rates
- Reuse of cell without cell recycle
- No need of re-inoculation in repeated-batch fermentation
- Prevent "wash out" when using continuous process at high dilution rate
- High operation stability (more resistance to extreme conditions)

TYPES OF BIOFILM REACTOR

BIOMASS SUPPORT PARTICLES

- Favor microbial adhesion
 - Surface charge
 - Hydrophobicity
 - Roughness
 - Porosity
 - Specific area (area per volume)
- High mechanical resistance
- Great availability
- Cost effectiveness

PLASTIC COMPOSITE SUPPORT (PCS)

Developed at Iowa State University
 (U.S. Patent Number: 5,535,893)

- Extrusion of
 - Polypropylene (50%w/w): Matrix
 - Agricultural products: Provide essential nutrients
 - Soy bean hull35% (w/w)
 - Yeast extract 5%
 - Soy bean flour 5%
 - Dried bovine albumin 5%
 - Mineral salts trace amount

APPLICATIONS OF BIOFILM REACTOR

Value-added products

Organic acid

Alcohol

Enzyme

Antimicrobial agent

- Ethanol
- Cellulase
- Amylase
- Penicillin
- Cephalosporin C
- Nisin

Repeated Batch Fermentation by S. cerevisiae

Repeated Batch Fermentation by S. cerevisiae

PCS Biofilm Reactor

ENZYME PRODUCTION

- Cellulase production from Trichoderma viride
 (Webb et al., 1986)
 - Spouted-bed reactor
 - 1.5 times higher than suspended cell
- Amylase production from recombinant *E. coli* (Oriel, 1988)
 - Submerged-bed biofilm with silicone polymer beads
 - 5 times higher than suspended cell
- Ligninolytic enzymes production from Phanerochaete chrysosporium (Govender et al., 2003)
 - Membrane biofilm reactor
 - 7 times higher than suspended cell

SUMMARY

Biofilm reactor

Increase production rate

Cost effectiveness

High stability

High biomass density

No requirement for cell recycle and re-inoculation

Less nutrient requirement

THANK YOU