Fermentative Hydrogen Production: Strain Selection and Reactor Operation

Jay Regan
Assistant Professor
Department of Civil & Environmental Engineering
Penn State University
Fermentative production of H\textsubscript{2} from sugars

• Full oxidation of glucose to H\textsubscript{2}:
 \[\text{C}_6\text{H}_{12}\text{O}_6 + 6 \text{H}_2\text{O} \rightarrow 12 \text{H}_2 + 6 \text{CO}_2 \]

• Known pathways:
 \[\text{C}_6\text{H}_{12}\text{O}_6 + 2 \text{H}_2\text{O} \rightarrow 4 \text{H}_2 + 2 \text{C}_2\text{H}_4\text{O}_2 + 2 \text{CO}_2 \]
 \[\text{C}_6\text{H}_{12}\text{O}_6 \rightarrow 2 \text{H}_2 + \text{C}_4\text{H}_8\text{O}_2 + 2 \text{CO}_2 \]

• Typical yield < 2 mol H\textsubscript{2}/mol glucose
Central Metabolism of Clostridium acetobutylicum 824

Glucose → 2 Pyruvate → 2 Acetate

2 CO₂ → 2 Acetyl-CoA → Acetoacetyl-CoA → Butyryl-CoA → Butyrate

2 NAD⁺ → 2 NADH

2 H⁺ → Fd_{ox} → Fd_{red} → NADH → NAD⁺

2 Ethanol → 2 Acetate

Acetone → 4 e⁻ → Butanol → 4 e⁻ → Butyrate

4 e⁻ → H₂ → NADH → NAD⁺
Strategies to Increase Fermentative H$_2$ Yields

- Reactor configurations
 - Continuous gas release in batch systems
 - Chemostat reactors

- Uncouple hydrogen consumption (methanogenesis/homoacetogenesis)

- Strain selection
Continuous gas release system (respirometer)
Continuous gas release in batch cultures

43% increased H₂ production

H₂ production is higher in CSTR than in batch

Batch Tests: Overall conversion efficiency of 26% (8.7%)

CSTR Tests: Overall conversion efficiency of 44% (15%)

Reasons: H₂ loss due to acetogenesis, shifts in community structure
Strategies to Increase Fermentative H2 Yields

• Reactor configurations
 – Continuous gas release in batch systems
 – Chemostat reactors

• Uncouple hydrogen consumption
 (methanogenesis/homoacetogenesis)

• Strain selection
Uncoupling Hydrogen Consumption

- Anaerobic food chain involves interspecies H_2 transfer

- H_2 production requires preventing:
 - Hydrogenotrophic methanogenesis
 - Homoacetogenesis
 - H_2-oxidizing propionate/ethanol production

Limiting Methanogenic H_2 Consumption

- Heat treatment of inoculum: kills non-spore forming bacteria such as methanogens that are hydrogen consumers

- Low pH (~6): limits methanogen growth

- Short SRT: methanogens grow too slowly

H₂ production maximized with heat treatment to kill non spore formers and using a low pH

HT = heat treated
NHT = non heat treated

Oh et al. (2003) *Environ. Sci. Technol*
Limiting Homoacetogenic H$_2$ Consumption

- Homoacetogenesis:

 \[4 \text{H}_2 + 2 \text{CO}_2 \rightarrow \text{CH}_3\text{COOH} + 2 \text{H}_2\text{O} \]

Solution:
- low P$_{H2}$ with continuous gas release
- CO$_2$ scavenging with KOH

Gas production

H2 Yield (mol/mol):
- 2.0 w/ scavenging
- 1.4 w/o

H2, %

CO2, %

Time, hr
Fermentation products

No CO₂ scavenging

With CO₂ scavenging
Strategies to Increase Fermentative H2 Yields

- Reactor configurations
 - Continuous gas release in batch systems
 - Chemostat reactors

- Uncouple hydrogen consumption
 (methanogenesis/homoacetogenesis)

- Strain selection
Central Metabolism of *Clostridium acetobutylicum* 824

H₂ yield from megaplasmid-deficient strain M5?

Production decreased in megaplasmid-deficient strains
Respirometric Results

Oh et al, In Preparation
Hydrogen Yield Results

<table>
<thead>
<tr>
<th>Yield (mol H₂/mol)</th>
<th>2.4</th>
<th>1.6</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (h)</td>
<td>0</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>Hydrogen (%)</td>
<td>0</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>

- M5
- ATCC 824
- Mixed culture
Comparison of H₂ yield for Clostridium spp.

Clostridium species: acetobutylicum, cellulolyticum, cellobioparum, celerecrescens, populetii, phytofermentans

Summary

Fermentative hydrogen yields can be increased by:

- Continuous release of H_2
- Continuous flow system
- Reducing H_2 consumption by methanogens and acetogens
- Using strains that divert more electrons to proton reduction than other products
Penn State Collaborators:
 Bruce Logan, Civil and Environmental Engineering
 Mark Guiltinan, Horticulture
 Mary Ann Bruns, Crop and Soil Science

Students/Post-docs/Research Associates:
 Booki Min, Sang-Eun Oh, Wooshin Park, Zhiyong Ren,
 Steven Van Ginkel, Thomas Ward, Yi Zuo

Funding:
 USDA/DOE 2003 Biomass Research and Development Initiative