Sustainable Bioenergy Grain Crop Production Systems

Greg W. Roth
Department of Crop and Soil Sciences
The Future of Grain Crops

- More intensive production
- Less surpluses and subsidies
- Higher prices with more volatility
- Improved nutrient cycling
- More need for sustainable production

No-tillage wheat following corn
Sustainability

- Soil quality
- Economic viability
- Pest management
- Nutrient cycling
- Biodiversity

No-tillage soybean following corn
Pennsylvania Issues

- Integration with existing animal based agriculture
- Diverse land resource base
- Many rural, small scale landowners
- Commodity processing industries in proximity to large markets
Sustainable Cropping Toolbox

- No-tillage
 - Less soil erosion, esp. on sloping lands
 - Moisture conservation
 - Reduced energy and labor
 - Lower cost of production
 - More potential for biomass removal
 - Increased management

No-tillage corn following wheat
Sustainable Cropping Toolbox

- Winter Cover Crops
 - Increased growth and capture of radiation in fall and spring
 - Soil erosion control
 - Increased revenue generation
 - Improved drought tolerance

No-tillage wheat following corn
Sustainable Cropping Toolbox

- Nutrient Cycling
 - Integration of animal and energy production
 - N, P and K of biofuel crops are recycled for crop use
 - Lower cost of production
 - Energy balance of crop production improved
Sustainable Cropping Toolbox

- Soil specific production
 - Use marginal lands for perennial crops
 - Switchgrass
 - Cool season grasses
 - Agroforestry?
 - Use drought prone soils for winter crops
 - Barley, wheat, triticale, canola
Example System

<table>
<thead>
<tr>
<th></th>
<th>Corn</th>
<th>Barley</th>
<th>Soybeans</th>
</tr>
</thead>
<tbody>
<tr>
<td>May-Sept</td>
<td>Sept-June</td>
<td>June-Nov</td>
<td></td>
</tr>
</tbody>
</table>

- All crops planted no-till: low energy use, soil erosion
- Outputs: Corn grain, corn stover, barley grain, barley straw, soybean grain
- Animal Use: Corn grain and stover (silage), soybean meal, barley straw
- Energy: Barley or corn grain, soybean oil
- Nutrients recycled in cattle manure, N fixed in soybeans
- Good drought tolerance, pest management due to no-till and crop rotation
Example Potential System

<table>
<thead>
<tr>
<th>Corn silage</th>
<th>Canola</th>
<th>Soybeans</th>
</tr>
</thead>
<tbody>
<tr>
<td>May-Sept</td>
<td>Sept-June</td>
<td>June-Nov</td>
</tr>
</tbody>
</table>

- All crops planted no-till: low energy use, soil erosion
- Outputs: Corn silage, canola grain, soybean grain
- Animal Use: Corn silage, canola meal, soybean meal
- Energy: Canola oil, soybean oil, canola straw?
- Nutrients recycled in cattle manure, N fixed in soybeans
- Good drought tolerance, pest management due to no-till and crop rotation
- Oilseed crushing spread across seasons
Winter Barley Research

- Screening lines for yield, winter hardiness, height, and disease resistance
- Release of new hulled lines
- Evaluation and demonstration of hulless lines for ethanol production

‘Doyce’ hulless barley
Canola and Rapeseed Evaluation

- Evaluating prospective winter and spring types
- Developing economic comparisons with existing crops
- Evaluating the potential of on farm pressing

Winter canola
Challenges

- Large scale biorefineries demand large quantities of uniform feedstocks
- Our ag systems generate diverse feedstocks in moderate quantities
- Can our ag systems provide a portion of the feedstocks to regional biorefineries and utilize coproducts effectively?
- Can smaller scale bioenergy systems be developed to use flexible feedstocks?
Conclusions

- Cropping systems can be intensified to sustainably provide additional bioenergy feedstocks
- No-tillage, cover cropping, nutrient management, and soil specific production are essential components
- New opportunities exist in biofuels systems, cropping systems and variety development
Questions?