OVERVIEW

• 2005 Billion Ton Report recap
• Goals of the 2010 Update
• Key assumptions of methods of analysis
 – Agricultural Resources
 – Forest Resources
• Results
2005 Billion Ton Report

- Does the U.S. land base have the potential to produced a sustainable supply of biomass to displace 30% of current (2005) petroleum consumption?
- Identified >1.3 billion tons of feedstocks annually to support a bioenergy and bioproducts industry

Policy Environments of 2005 vs. 2010

- EISA (2007) mandates 36 billion gallons of ethanol by 2022
 - Maximum of 15 billion gallons of corn ethanol
 - Remaining 21 billion gallons to come from cellulosic and advanced sources
Goals of the Update

• To address potential biomass resource availability at target prices and high spatial resolution
• To improve upon the data, the methodology, and projections of 2005 Billion Ton Study
• To make the data and analysis transparent and available to others
• To address concerns and issues from the 2005 study

Key Differences Between the 2005 Billion Ton Study and the 2010 Billion Ton Update

<table>
<thead>
<tr>
<th>2005 Billion Ton Report</th>
<th>2010 Billion Ton Update</th>
</tr>
</thead>
<tbody>
<tr>
<td>National estimates</td>
<td>County-level with aggregation to state, regional and national levels</td>
</tr>
<tr>
<td>No price or cost analyses</td>
<td>Supply curves by feedstock by county at farmgate/forest landing</td>
</tr>
<tr>
<td>Crop residue removal sustainability addressed from national perspective; erosion only</td>
<td>Crop residue removal sustainability modeled at soils level; erosion & soil carbon</td>
</tr>
<tr>
<td>No explicit land use change modeling</td>
<td>Land use change modeled for energy crops</td>
</tr>
<tr>
<td>2005 USDA agricultural baseline and 2000 forestry RPA/TPO</td>
<td>2010 USDA agricultural baseline 2010 FIA inventory and 2007 forestry RPA/TPO</td>
</tr>
<tr>
<td>Erosion constraints for forest residues</td>
<td>Greater erosion plus wetness constraints for forest residues</td>
</tr>
</tbody>
</table>
Contributors to the Billion-Ton Update

- Oak Ridge National Laboratory - 10
- Idaho National Laboratory - 3
- Agricultural Policy Analysis Center (University of Tennessee) - 5
- Navarro Research & Engineering (DOE Golden Field Office) - 1
- USDA/Forest Service - 13
- USDA/ARS - 7
- USDA/NRCS - 1
- USDA/NIFA - 1
- Iowa State University - 1
- Kansas State University - 1
- State University of New York – 3
- Texas A&M – 1
- University of Illinois - 1
- University of Minnesota - 2

Summary:
- 50 contributors
- 2 Labs (ORNL & INL)
- 4 USDA agencies
- 7 Universities

Reviewers
- 3 USDA
- 4 University
- 1 National Council
- 1 National Institute
- 2 International

Energy Crop Chapter Authors:
- Grasses – Mitchell and Vogel, ARS
- Miscanthus – Voigt, U. IL
- Sugarcane – Richard, ARS
- Sorghum – Rooney, TX A&M
- Poplar – Riemenschneider, U. MN
- Willow – Volk and Abrahamson, SUNY
- Eucalyptus – Langholtz, ORNL
- Southern Pine – Wright, ORNL

Associated Efforts

http://bioenergykdf.net
How Much Biomass is Available?

Feedstock; price, year, yield assumptions (scenarios); current use status; geography

Scenarios
- Baseline
- High-yield
 - 2%, 3%, 4% annual growth

Use Status
- Currently used
- Potential

Year
- 2010 (base)
- 2017
- 2022
- 2030

Scale
- National
- Regional
- State
- Multi-county
- County

The Taxonomy of Biomass Feedstocks

Biomass Resources

Primary Forestland resources
- Fuelwood (Currently used)
- Composite operations
- Logging residue
- Thinnings (timberlands)
- Other removal residue
- Thinnings (other forestlands)
- Conventional products

Primary Cropland resources
- Grain crops (Currently used)
- Oil crops (Currently used)
- Agricultural crop residues
- Perennial grasses
- Woody crops
- Annual energy crops
- Pulping liquors (Currently used)
- Mill residues (Currently used)
- Unused mill residue
- Crop processing residues
- Waste oils & greases
- Animal manures
- Urban wood wastes

Secondary residues & waste resources
General Approach

Supply curves are estimated at the roadside (farmgate, landing) as bales or chips

- Resource acquisition costs
 - Grower payments for crop residues
 - Production costs for dedicated energy crops
 - Stumpage costs for forest residues and conventional wood

- Collection and harvest costs
 - INL, ORNL, EcoWillow models for cropland resources
 - FRCS model revised to handle small trees, tops & limbs in all regions

- Key technical and factor input cost data, enhancement of models (e.g., POLYSYS), and analyses developed through coordination among partners

County-level feedstock supply curves for major primary agriculture and forest resources

1. For primary agriculture resources - Crop residues and energy crops (supply curves)
 - POLYSYS- Policy Analysis System Model
 - Based on NASS, USDA Census data, USDA Agricultural Baseline projections
 - Predicts optimal farm land use with the additional option of collecting annual residues or choosing purpose grown energy crops

2. For primary forest resources - Resource cost analysis used to estimate supply curves
 - Based on USDA/FS data (FIA, TPO, RPA, ...); meet RPA projections for pulp, timber, veneer
 - Resource constraints include forest residue access, recovery, and merchantability
 - Requirements for resource environmental sustainability
Agricultural Resources

Calibrated OBP version of POLYSYS – dynamic, county-level model of the U.S. agricultural sector

- POLYSYS is anchored to the USDA Baseline Forecasts
- 451 million acre land base - Cropland (250 million acres); Cropland used as pasture (22 million acres); Hayland (61 million acres); Permanent pasture (118 million acres)
- Includes detailed cropping budgets (traditional and dedicated energy crops)
 - Estimated discounted average cost of production
 - Established yield potentials from published literature
 - Identified land suitability (constraints) for sustainable production
 - Energy Crops compete with traditional crops for acreage
 - Forest resources exogenous to the model

To create biomass supply curves POLYSYS is run at a set of feedstock prices ($40 to $60/dry ton at $5 increments)
- POLYSYS calculates the land use (acreage of land type) in each county that will simultaneously
 - maximize farmer profit
 - meet USDA baseline production of 8 major crops and livestock demands
 - meet sustainability requirements for residue removal

Reference:
University of Tennessee - Agricultural Policy Analysis Center (APAC)
(http://www.agpolicy.org/)
Crop Residues

Residue Sustainability

- Residue retention coefficients estimated using RUSLE2, WEPS, and SCI for erosion and soil carbon
 - Separate coefficients for acres under reduced till and no-till cultivation

Crop Residues

- Threshold grower payments – based on nutrient replacement cost (fertilizer) plus organic matter (~$15/dry ton) plus $10/dry ton (regional variability due to regional variation in fertilizer prices)
 - Apply to stover and straws
- Crop residue collection costs
 - Sensitive to amount removed/acre; decreases exponentially as removal amount increases
Herbaceous crop yields
2010 yield = 3 – 9.9;
2030 yield = 3.6 – 12.0
(baseline scenario)

• Woody crops (poplar, pine, eucalyptus, willow)

Woody crop yields
2010 yield = 3.5 – 6;
2030 yield = 4.2 – 7.2
(baseline scenario)
Dedicated Energy Crops: Costs

- Production costs
 - Planting (site prep, materials, etc)
 - Maintenance (weed control, fertilization, etc)
- Harvesting
 - Herbaceous crops (mow, rake, bale, move/stack roadside)
 - Non-coppice woody crops (fell, bunch, chip)
 - Coppice woody crop (continuous cut and chip)

Dedicated Energy Crops: Sustainability

- Energy crops allowed on non irrigated land
- Minimal tillage, fertilizer and herbicide applications
- Used BMPs for establishment, cultivation, and harvesting
- Some intensification of pasture land required (Management Intensive Grazing) to meet lost forage when energy crops displaced pasture
Forestland resources

504 million acres of timberland, 91 million acres of “other forestland”

<table>
<thead>
<tr>
<th>Types</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timberland- Logging residues</td>
<td>FIA plots (federal & nonfederal lands)</td>
</tr>
<tr>
<td>Timberland- Fuel treatments</td>
<td>FIA plots (federal & nonfederal lands)</td>
</tr>
<tr>
<td>Timberland - Conventional wood (pulp)</td>
<td>FIA plots (federal & nonfederal lands)</td>
</tr>
<tr>
<td>Timberland - Land clearing & silvicultural treatments</td>
<td>FIA plots (federal & nonfederal lands)</td>
</tr>
<tr>
<td>Thinnings from “other forestland” (<20f3/yr) e.g pinyon juniper</td>
<td>FIA plots (federal & nonfederal lands)</td>
</tr>
<tr>
<td>Fuelwood*</td>
<td>EIA</td>
</tr>
<tr>
<td>Primary Mill residues*</td>
<td>TPO</td>
</tr>
<tr>
<td>Secondary mill residues*</td>
<td>EIA, Surveys</td>
</tr>
<tr>
<td>Pulping liquors*</td>
<td>EIA</td>
</tr>
<tr>
<td>Urban wood residues</td>
<td>EPA and ISFS Forest Products Lab</td>
</tr>
</tbody>
</table>
* Fraction in current use are considered not available

FiA-based forest resources

- Evaluated the “state-of-the-science” for biomass removal
 - erosion, soil nutrients, biodiversity, soil-organic carbon, and long-term soil productivity
- Developed woody retention levels by slope classes within context of a science review
- Projections based on 2007 RPA/TPO (accessed February 2010)
Forestland resources

Sustainability assumptions for forest residue retention

- Logging residues
 - 30% left on-site
- Fuel treatment thinnings
 - Slope <40% = 30% of residue is left on-site
 - Slope >40% to <80% = 40% of the residue left on site
 - Slope >80% = no residue is removed (no limbs or tops yarded)
- Removed steep, wet and roadless sites

Forestland resources

FIA-based forest resources

- ~37,000 permanent field plots
- All fire regime condition classes
- Forests could have fuel treatment if stand density greater than 30% of maximum stand density for forest type/region
- Thin over 30-year period
Scenarios (1 of 3)

• Baseline scenario assumptions
 – Published USDA Baseline forecast for crop yields, acres, etc.
 – Baseline forecast extended to 2030 based on trends in last 3-years of published forecast
 – Stover to grain ratio of 1:1 assumed
 – National corn yield average of 160 bu/ac in 2010 and assumed to increase to 201 bu/ac in 2030

Scenarios (2 of 3)

• Baseline scenario assumptions (continued)
 – Assumes a mix of conventional till (CT), reduced till (RT), and no-till (NT)
 • For corn
 – 2010 – 38% conventional till, 43% reduced till, 20% no-till
 – 2030 – 34% conventional till, 43% reduced till, 23% no-till
 • No residue collected on conventionally tilled acres
 – Energy crop yields increase of 1% annually (determined by year of planting)
 • Yield growth attributed to learning by doing in energy crops and limited R&D
Scenarios (3 of 3)

- **High-yield scenario(s) assumptions**
 - Corn yields increase to 265 bu/acre in 2030 (national average)
 - Higher amounts of cropland in no-till cultivation allow greater residue removal
 - Energy crop yields increase at 2%, 3%, and 4% annually
 - Higher yields attributed to more aggressive R&D

Final Comments

- Energy crops displace mostly commodity crops at low prices
- Significant quantities of pasture (cropland pasture and permanent pasture) are displaced at higher prices
- Lost forage needs to be replaced
 - Growing of additional hay (alfalfa)
 - Intensification of pasture (e.g., management intensive grazing, rotational grazing, etc.)
 - Both
Contact:

Bob Perlack
perlackrd@ornl.gov

Laurence Eaton
Oak Ridge National Laboratory
eatonlm@ornl.gov