Assessing Benefits of Winter Crops

Winter Crops for Bioenergy Workshop

March 29, 2011

Presentation for Penn State Bioenergy Short Course Series 2011
Dan Dostie, State Resource Conservationist, USDA NRCS, Harrisburg, PA
Objectives

- Review the Benefits of Winter Crops
- Present Tools to Assess Benefits Provided
- Discuss NRCS Programs Promoting Bioenergy
Current NRCS Practice Standard Definitions

- **Cover Crop (340)**
 Crops including grasses, legumes and forbs for *seasonal* cover and other conservation purposes and not harvested for seed or forage
 (Applies on all lands requiring vegetative cover for natural resource protection and or improvement)

- **Forage and Biomass Planting (512)**
 Establishing adapted and/or compatible species, varieties, or cultivars of herbaceous species suitable for pasture, hay, or biomass production
 (Applies to all lands suitable to the establishment of *annual*, biennial or perennial species for *forage or biomass production*)
Benefits of Winter Crops

- Add biodiversity to existing crop rotation yielding a variety of environmental benefits
- Add new source of income from biomass harvest
- Contribute to producing a national renewable energy supply

"The greatest service which can be rendered any country is to add a useful plant to its agriculture."

Thomas Jefferson Quote in reference to his service to his country
Environmental Benefits of Winter Crops

- Improve the Health of the Soil
 - Sustain Crop Productivity
 - Provide Clean Water
 - Support Fish and Wildlife Communities
 - Mitigate Climate Change
Soil Biology and the Landscape

- Plant root hair
- Bacterial colonies
- Mycorrhizal hyphae
- Actinomycete hyphae and spores
- Decomposing plant cells
- Nematode
- Clay-organic matter complex
- Flagellate
- Fungal hyphae and spores
- Amoeba
- Ciliate
Tools to Assess Benefits of Winter Crops

- PA Soil Health Assessment Worksheet
- NRCS Soil Loss Equation (RUSLE2)
- On Farm Landscape Energy Audits

NRCS delivers Conservation Technology in Partnership with leading University and Research Centers
PA Soil Health Assessment Worksheet

<table>
<thead>
<tr>
<th>Indicators</th>
<th>Excellent Soil Health</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Structure</td>
<td>Stable, strong soil aggregates; good weight-bearing ability by soil super structure; excellent tilth; low potential for compaction, crusting and/or puddling</td>
</tr>
<tr>
<td>Surface Cover</td>
<td>Soil surface cover year-round with growing crop, crop residue and/or cover crop; 50-100% soil cover</td>
</tr>
<tr>
<td>Water Infiltration and Drainage</td>
<td>Soil drains well after rain; brief or no ponding visible; surface pores; low runoff</td>
</tr>
<tr>
<td>Organic Matter</td>
<td>Organic matter content stable at or increasing toward high levels for given soil type; active carbon sequestration practices</td>
</tr>
<tr>
<td>pH</td>
<td>Soil pH within the optimum range for grown plants</td>
</tr>
<tr>
<td>Fertility</td>
<td>Sufficient levels of all essential plant nutrients; proper nutrient balance ratios</td>
</tr>
<tr>
<td>Soil Movement</td>
<td>No visual evidence of soil movement; surface runoff generally clear</td>
</tr>
<tr>
<td>Soil Biodiversity</td>
<td>Numerous signs of earthworms including night crawlers; active strong bio-diverse soil life community present</td>
</tr>
<tr>
<td>Plant Growth</td>
<td>Healthy uniform growth; consistently high yields; robust root system; plants resist stress</td>
</tr>
</tbody>
</table>
Example of Bulk Density indicator of Soil Health

Soil Densities

- Mixed
- Austrian Winter Peas
- Diakon Radish

Soil bulk density (gr/cm^3)
NRCS Soil Loss Equation (RUSLE2)

- Centre County Example with Winter Canola
- Lancaster County Example with Winter Barley
- Other tools embedded in RUSLE2
Centre County

- All crops no-till
- All crop residues returned to field
- 200 ft, 15% slope
- Hagerstown soil (5)
- Yields
 - Corn grain – 150 bu
 - Corn silage – 23 T
 - Wheat – 80 bu
 - Winter canola – 60 bu
Lancaster County

NRCS RUSLE2 Estimated erosion

- All crops no-till
- 200 ft, 15% slope
- Hagerstown soil
- Yields
 - Corn grain – 150 bu
 - Soybean - 60
 - Barley – 110 bu
 - Rye cover 2.5 T
Other Tools in RUSLE2 . . .

- Fuel Savings Estimator
- Soil Condition Index (trend of OM)
- Soil Tillage Intensity Rating (STIR)
- Lots of other On Line Tools too!
On Farm Landscape Energy Audits

- Documents current energy usage, over the past annual cycle, and provides cost-effective recommendations for energy conservation.

- Includes energy used in the cultivation, protection, and harvesting of agricultural crops.
NRCS Programs Promoting Bioenergy

- New Policy Energy as a Concern
- Technology being developed
Energy as a Resource Concern

- New Policy as of October 2010

- It is NRCS Policy to provide assistance to support the national goal of reducing reliance on fossil fuels through energy conservation and replacement of fossil fuel-based energy with renewable energy sources including biomass feedstock production that is environmentally and economically sustainable.
Energy as a Resource Concern

The scope of NRCS technical assistance to address energy related resource concerns includes:

(1) Reducing *on-farm energy* derived from fossil fuels and energy efficiency.

(2) Assistance to produce renewable energy *feedstocks* in a sustainable manner.

(3) Assistance to produce energy from renewable resources to support the application of a conservation practice.
Conservation Technology being developed

- 7 existing practice standards (512)

- 32 practices having energy added as a purpose
 - To be reviewed on Federal Register
 - Cover Crops (340)
 - Residue Management (NT, MT, RT, Ssnl)
 - Renewable Energy Production (641) NEW!
USDA Financial Assistance 2012

- Biomass Crop Assistance Program (FSA)
- Rural Energy for America Program (RD)
- Conservation Loans (FSA)
- Conservation Reserve Program (FSA)

- NRCS may provide Technical Assistance
NRCS Financial Assistance 2012

- **Environmental Quality Incentives Program**
 - On Farm Landscape Energy Audits
 - Conservation Practices to consider
 - Forage and Biomass Planting (512)
 - Cover Crops (340)
 - Residue Management (NT 329, MT 345)
 - Crop Rotation (328)
NRCS Financial Assistance 2012

• Payment Cost Categories
 • Typical Statewide Average Scenarios
 • Materials, Equipment/Installation, Labor, Mobilization, Operation & Maintenance, Acquisition of Technical Knowledge, Forgone Income, Risk, Administration Costs

• NOT all eligible costs!!!!
Current Cover Crop Scenarios

- Rye, Wheat, Barley, Buckwheat
- Typical Scenario for average 30 acre unit
- Conventional Seeding $25/ac
- No Till or Aerial $35/ac
- Organic Scenarios $38/48ac
Current Forage & Biomass Planting Scenarios

- Typical Scenario for average 8 acre unit
- Non Native Seeding $220/ac
 - Orchard, ryegrass, clover
- Native Seeding $260/ac
 - Switchgrass Mix
- Organic Scenarios $240/$300/ac
Current Crop Rotation Scenarios

- **Typical Scenario for average 30 acre unit**
- **General Change $9/ac**
 - Adding legumes, etc
- **Increasing Residue $21/ac**
 - Minimum 30% residue
 - Positive Soil Condition Index so need to increase OM, improve field operations, & reduce erosion.
- **Vegetables $45/ac**
- **Organic Scenarios $25/ac/$58**
Current Residue Management Scenarios

- **No Till** $22/ac
 - Planting Corn or Drilling Small Grains
 - Typical scenario for average 130 acre unit

- **Organic No Till** $36/ac
 - Includes No Till seeding of rye/vetch cover crop
 - Use of Roller Crimper to terminate cover crop
 - Typical scenario for average 25 acre unit
NRCS Financial Assistance 2012

- Chesapeake Bay Watershed Initiative?
- Federal Budget Impacts?

Questions?