Topics

- **Goals**
- **Qualifiers**
 - Size/Energy Costs
- **Considerations**
 - Space
 - Fuel Supply
 - Distribution Systems
 - Electric Considerations
 - Permitting
- **Application**

CHP Project Goals

- Increase Energy Efficiency
- Reduce Energy Costs
 - High Thermal Load Factor
- Minimize Operational Risk
- Reduce Carbon Footprint
- Other Issues
 - Reliability, Expansion, etc.

General CHP Qualifiers

- Substantial Energy Costs – Gas/Thermal & Electric
 - $100,000 per year you can consider CHP
 - $1 million per year you should consider CHP
- Substantial Operating Hours
 - > 5,000 hours/year system operation at Full Load
- Coincident Thermal & Electric Loads
 - Thermal Distribution System required
 - Thermal Loads must be Compatible with CHP outputs
- Corporate Willingness & Desire for Benefits
General CHP Qualifiers

- Industrial Users
 - > 1 MW peak demand with process thermal loads

- Commercial Users
 - Office Buildings over 50,000 SF
 - Enclosed Shopping Malls with central utilities
 - Hotels with over 100 rooms

- Institutional Users
 - Colleges over 5,000 full time students
 - Hospitals over 100 beds
 - Multifamily Residential over 100 units

*Thermal distribution system required for all applications

Design & Project Considerations

- All biomass is local – Transportation costs can kill a project.
 - 50-mile radius (rule of thumb maximum distance)

- Biomass feedstocks – How reliable is the source? Price?
 - Due diligence is needed for a long-term supply contract. Do a biomass availability assessment.

- What if we lost the supply? How do we manage seasonal variation? Have alternatives.

- Feedstock competition is coming as bioenergy advances.

- What is the quality of the feedstock?
 - What is the moisture content? It impacts system design.
 - Wood chips by hammermill or knife – avoid clogging of auger.

Design & Project Considerations

- Physical Location & Space Availability
 - Fit equipment with service access
 - Generation and Heat Recovery should be close
 - Easier to transmit steam or water than exhaust
 - Proximity to Switchgear & Thermal Loads Cost Issue

- Thermal Distribution System
 - Type and quality of thermal load
 - Tie-in point at return line
 - Maximize load for all 12 months
 - Thermal Use all Operating Hours

Design & Project Considerations

- Vary Power Production according to Thermal Load

- Interconnection
 - The local utility should be contacted early to clarify interconnection and distribution issues

- Facility Power Architecture
 - Tie-in prior to distribution
 - CHP output at 480 ~ 13,000 V

- Fuel Availability, Pressure & Quality
 - Combustion Turbines require high pressure
 - Fuel quality can have significant impact
Design & Project Considerations

- Electric Issues
 - ‘Black Start’ Capability – Emergency Circuits
 - Generator Block Loading Capability
 - CHP System Parasitics
- Emissions
 - EPA Title 5 or Local Authority
 - Residue Disposal
- Noise
 - Mitigated with Enclosures & Silencers
- CHP System Control & Metering
 - Integrate with component controls, utility meters & BAS

Design & Project Considerations

- Operating Air Permit
 Size may Dictate Requirements
 Exhaust Treatment Options
- Electrical Interconnection
 Distribution Utility Issue
- City/State Construction Permits
- Operating Personnel
- Incentive Program Requirements
 - Efficiency/Emissions
 - M&V

Design & Project Considerations

- County/City Planning Boards: Land use and noise ordinances.
- Building & Fire Code Departments: Exhaust temperatures, venting, gas pressure, space limitations, vibration, steam piping and structural issues.
- Environmental/Public Health Department: Public health and safety issues, hazardous materials and waste management.
- Water/Sewer & Public Works Authorities: Water supply and discharge issues.

Design & Project Considerations

- What Makes a Good CHP Project?
 - Know your loads - 12 months per year
 - Select equipment with correct T/E Ratio
 - Target max Load Factor not efficiency
 - Long-term Fuel Supply is Critical
 - Proper planning by qualified personnel
 - Monetize all benefits – energy, emissions, reliability
 - Include all costs – fuel, maintenance & emissions controls
 - Understand permit requirements and schedule
 - Get corporate “buy-in”
Rough & Ready Lumber, OR

- In order to dry more lumber, Rough and Ready Lumber, located in Josephine County, Oregon, could no longer rely on air-drying. They needed greater boiler capacity to heat their kilns and decided to replace their 30-year old boiler.
- In addition, increased emphasis on thinning nearby national forests to reduce wildfires and insect infestations meant the federal government would be supplying a lot more wood than they could burn in their existing plant.
- In February 2008 Rough and Ready began commercial operation of a new 1.5 MW wood-fired combined heat and power (CHP) plant.

www.NorthwestCleanEnergy.org

CHP System Description

- 40,000 PPH, 300 psig water tube steam boiler
- 1.5 MW backpressure steam turbine generator
- Discharge steam is reduced to 20 psi and used to heat 12 double-track dry kilns. Kiln condensation is then returned to the boiler to be reheated.

Project Economics

Total installed cost = $6 million
- 4 year Payback with incentives (15 years with no incentives)
Incentives:
 - $2,350,000 USDA Rural Development Section 9006 Loan Guarantee
 - $500,000 USDA Rural Development Section 9006 Grant
 - $243,000 Woody Biomass Grant from U.S. Forest Service
 - $1,700,000 grant from the Energy Trust of Oregon, paid out over a minimum of four years based on forecasted energy production. This averages out to approximately $42/MWh.
 - $210,000 Federal production tax credit (35% credit for pollution control equipment)
 - $1,350,000 Oregon Business Energy Tax Credit
Revenue streams:
- Approximately 10 million kWh/yr sold to the local utility at $65/MW

Project Benefits

- Mill survival and creation of up to 12 jobs
- Will help the company stay competitive
- Mitigation of potential gaps in sawmill production caused by different drying schedules of ponderosa, sugar pine and Douglas fir
- Additional revenue streams: custom-drying for other lumber producers and sale of electricity
- Contribution to forest health (thinning the forest reduces wildfires and insect infestations)
- Adds renewable energy to Oregon’s electrical grid
- Public perception of biomass plants has improved
James Freihaut, Director
Mid-Atlantic Clean Energy Application Center
104 ENGINEERING UNIT A
UNIVERSITY PARK, PA 16802
TEL: 814.863.0932
E-MAIL: jaf31@psu.edu

Gerrard Foley
New Jersey
68 BAYBERRY ROAD
PRINCETON, NJ 08540
TEL: 609.466.2200
E-MAIL: gfoley@psu.edu

Richard Sweetser
Virginia, DC and Maryland
12020 MEADOWDLE COURT
HERNDON, VIRGINIA 20170
TEL: 703.707.0293
E-MAIL: rs27@psu.edu

Bill Valentine
Delaware
THE PHILADELPHIA NAVY YARD
4801 SOUTH BROAD STREET
PHILADELPHIA, PA 19112
TEL: 215.353.3310
E-MAIL: wjv3@psu.edu

James Freihaut, Director
Mid-Atlantic Clean Energy Application Center
104 ENGINEERING UNIT A
UNIVERSITY PARK, PA 16802
TEL: 814.863.0932
E-MAIL: jaf31@psu.edu

Gerrard Foley
New Jersey
68 BAYBERRY ROAD
PRINCETON, NJ 08540
TEL: 609.466.2200
E-MAIL: gfoley@psu.edu

Richard Sweetser
Virginia, DC and Maryland
12020 MEADOWDLE COURT
HERNDON, VIRGINIA 20170
TEL: 703.707.0293
E-MAIL: rs27@psu.edu

Bill Valentine
Delaware
THE PHILADELPHIA NAVY YARD
4801 SOUTH BROAD STREET
PHILADELPHIA, PA 19112
TEL: 215.353.3310
E-MAIL: wjv3@psu.edu