Natural Gas Enhanced Biofuels

Review and Preliminary Economics

August 16, 2012
Comparison of Biofuel Production Pathways*

![Bar chart showing gallons of ethanol equivalent biofuel per ton of biomass for different production pathways]
Low biofuel yield makes economic viability challenging.
Natural Gas Enhanced Process

- Addition of H₂-rich syngas from natural gas
 - Increases liquids yield per ton of biomass
 - Decreases lifecycle CO₂ emissions – qualified under EPA RFS 2
- Reduces technical risk
 - Uses technology proven at scale
 - Adjusting H₂/CO ratio upward is always beneficial
- Start-up with SMR; higher availability

> 2X production; 40% more capital
Estimated Project Economics

- **Feeds & Product Slate**
 - **Feeds**
 - 900 t/d of bone dry wood
 - 11 MM SCFD of natural gas purchased
 - **Product Slate - 90% of nameplate**
 - 2,000 bbl/d (84,000 gal/d) – FT liquids
 - 14.5 MW of Green electric power sold to grid

- **Costs**
 - CAPEX - $300MM ($150,000/bbl/day)
 - Wood @ $40/Bone dry ton
 - Natural gas @ $5.00/MM Btu (HHV)
 - Electric power export @ $70/MWh (premium green power)

- **Financial Assumptions**
 - Income tax rate @ 30%
 - 100% equity financed
 - 10 year economics
Projected IRR

- CAPEX, $/bbl/day
- Fuel Price + Credit, $/gal
- Wood Price, $/bone dry ton
- Natural Gas, $/Mcf
- Power Credit, $/MWh
IRR as a Function of Oil Price

Based on the following correlation relating diesel prices to WTI:

\[Y = 0.029(X) + 0.022 \]

where: \(Y \) – $/gal refinery diesel price; \(X \) – $/bbl WTI price